New Approach to a General Nonlinear Multicomponent Chromatography Model

Tingyue Gu
Gow-Jen Tsai
George T. Tsao
School of Chemical Engineering
Laboratory of Renewable Resources Engineering
A. A. Potter Engineering Center
Purdue University
West Lafayette, IN 47907

Mathematical modeling and numerical analysis of multicomponent fixed-bed adsorption/desorption operations, such as frontal, displacement and elution, have received considerable attention since the late 1960s. Various mathematical models with different complexities have been proposed and a comprehensive review was given by Ruthven (1984). Basically, they can be classified into the following three major categories: 1. staged equilibrium models, 2. interference theory (Helfferich and Klein, 1970), and 3. rate equation models. Among them, the general nonlinear multicomponent rate equation model is the most "realistic" model for all kinds of multicomponent adsorption/desorption column processes. The model is formulated according to mass balance of each species in bulk fluid and particle phases. It considers axial dispersion, external mass transfer, intraparticle diffusion and multicomponent nonlinear isotherms. Due to the complexity and nonlinearity of the model, analytic solution is impossible and numerical computation can be very time-consuming because the system equations are stiff in many cases. Hence, an efficient algorithm is essential.

So far three different algorithms have been proposed to solve models similar to ours. Liapis and coworkers (1978a, b, 1980) used orthogonal collocation (OC) method for the discretization of both bulk- and particle-phase equations. The resulting ordinary differential equations (ODE's) were solved using a fifth-order Runge-Kutta method. Their model was applied to frontal adsorption. Yu and Wang (1989) tried OC on finite element for bulk-phase equations and OC method for particle-phase equations. The resulting ODE's and algebraic equations were solved using a differential algebraic equation solver. Recently, Mansour (1989) applied a similar model to frontal adsorption. Apparently he used finite difference method for the whole numerical procedure and iteration for nonlinear isotherms.

In this work, we present a robust and efficient approach to solve the general nonlinear, multicomponent rate equation model. It uses the finite element (FE) (with quadratic elements) method for the bulk-phase equations and the OC method for the particle-phase equations. The resulting ODE's are solved with implicit Gear's stiff method (Gear, 1972). Our code is capable of simulating the three major modes of chromatography, frontal, elution, displacement, and multistage operations accurately and efficiently.

Model

Consider a fixed-bed adsorption column packed with uniform porous, spherical, solid adsorbents. Suppose the process is isothermal and there is no concentration gradient in the radial direction of the column. Assuming that there exists local equilibrium for each component between the pore surface and the liquid phase in the macropores inside particles, the following dimensionless governing equations for component i in the bulk fluid and particle phases can be obtained.

\[\frac{1}{PeU_i} \frac{\partial^2 c_M}{\partial z^2} + \frac{\partial c_M}{\partial z} + \frac{\partial c_p}{\partial z} + \xi_i (c_M - c_{p,M-1}) = 0 \] (1)

\[\frac{\partial}{\partial z} [(1 - \epsilon_p) c_p' + \epsilon_p c_p] - \eta_i \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_p}{\partial r} \right) \right] = 0 \] (2)

\(r = 0, \quad c_M = c_M(o, z), \quad c_p = c_p(o, r, z) \) (3, 4)
For elution process,
\[C_p(r)/C_w = \begin{cases} \frac{1}{r - r_{\text{imp}}} & 0 < r < r_{\text{imp}} \\ 0 & r > r_{\text{imp}} \end{cases} \]

If component \(i \) is displaced,
\[C_p(r)/C_w = 0 \]

For frontal adsorption,
\[C_p(r)/C_w = 1 \]

Formulation
Using Galerkin approximation (Reddy, 1984), Eq. 1 becomes
\[[D_B]_m [c_u'] + [A_{KB}]_m [c_u'] = [PB]_m + [AFB]_m \]

where
\[[D_B]_m = \int \phi_m \phi_n \, dz \]
\[[A_{KB}]_m = \int \left(1 + \frac{\partial \phi_m}{\partial z} \right) \left(\frac{\partial \phi_n}{\partial z} \right) + \xi \phi_m \phi_n \, dz \]
\[[AFB]_m = \int \xi \phi_m c_{pl,1} \, dz \]

in which \(m, n = 1, 2, 3 \), and the superscript \(e \) indicates FE matrices and vectors evaluated over each individual element before global assembly. Four-point Gauss-Legendre quadratures (Reddy, 1984) are used for integrations. The natural boundary condition \((PB)_m |_{z=0} = -c_w + C_p(r)/C_w \) is applied to \([A_{KB}]_m\) and \([AFB]_m\) at \(z = 0 \).

Using the same symmetric polynomials defined by Finlayson (1980), Eq. 2 is transformed to the following equation by OC method,
\[\left(\sum_{i=1}^{N_t} \frac{\partial g_i}{\partial c_{pl}} \frac{dc_{pl}}{dr} \right)_{\text{left}} = \sum_{i=1}^{N_t} B_{ik} (c_{pl})_{k}, i = 1, 2, \ldots, N \]

where the matrices \(A \) and \(B \) are the same as defined by Finlayson (1980).

Algorithm
If \(N_t \) quadratic elements [i.e., \((2N_t + 1)\) nodes] are used for \(z \)-axis in bulk-phase equations and \(N \) interior \(\text{OCs} \) are used for \(r \)-axis in particle-phase equations, the above discretization procedure gives a total of \(N_t(2N_t + 1)(N + 1) \) ODE's which are then solved simultaneously using Gear's stiff method (IMSL, 1987). Note that a function subroutine must be supplied to the ODE solver to evaluate concentration derivatives at each element node and \(\text{OC} \) point with given trial concentration values. The concentration derivatives at each element node \((c_m')\) and \(\text{OC} \) point \((c_{pl}')\) are determined from Eqs. 9 and 13, respectively. At each \(\text{OC} \) point, Eq. 13 can be rewritten in the following matrix form.
\[[GP][c'] = [RH] \]

where
\[GP_{ij} = \partial g_i/\partial c_{pl}, \quad c_{pl}' = dc_{pl}/dr, \quad RH_i = \text{righthand side of Eq. 13.} \]

Since the matrices \([GP]\) and \([RH]\) are known with given species concentrations at each \(\text{OC} \) point, the vector \([c']\) can be easily determined from Eq. 16. Using this approach, we can deal with complex nonlinear isotherms here without iteration. The solution of the ODE system provides the moving concentration profiles inside column and the effluent history.

Results and Discussion
The proposed numerical approach was demonstrated using the following Langmuir isotherm in different column operations.
\[C_p' = \frac{a_t C_p}{1 + \sum_{j=1}^{N_t} b_j C_p(j)} \]

That is,
\[c_{pl}' = \frac{a_t c_{pl}}{1 + \sum_{j=1}^{N_t} (b_j C_p(j)) c_{pl}} \]

in which \(g_t = (1 - \epsilon_p) c_p' + \epsilon_p c_{pl} \). The boundary condition at \(r = 1 \) becomes
\[\sum_{j=1}^{N_t} A_{N+1,j} (c_{pl})_j = B_{11} (c_w - c_{pl,1}) \]

The dotted dashed lines were obtained with \(N = 1 \) compared to solid lines with \(N = 2 \). Figure 2 shows a two-component displacement analysis with near shock wave stiffness in concentration profiles. Figure 3 shows a
Figure 1. Three-component breakthrough analysis.

Comparison of reverse flow displacement and forward flow displacement after an incomplete frontal adsorption which lasted \(t = 2 \). Such multistage operations can be simulated using our code with a single execution. In Figure 4, a four-component elution was shown (\(T + 0.1 \)). Its CPU time on SUN 4/280 computer (15.10 min) further proves the ability and efficiency of our code in simulating complicated systems. Other operations such as nonlinear gradient elution can also be accommodated using our code. The comparison of multicomponent system with corresponding single-component systems in Figures 1 and 4 shows that the general rate equation model is a powerful tool for the study of interference in multicomponent adsorption and chromatography.

Table 1 lists the parameters we used (in the input data file) to obtain fully-converged concentration profiles (solid lines in Figures 1 to 4). CPU times are also listed. In addition, we also tried Figure 1 (solid lines) case on a low-end personal computer (IBM PS/2 30 286), with a running time of 162 min. Excellent mass balances (numerical area integration vs. theoretical calculation) were obtained. The difference in all cases is below 0.1%!

It is found that in some cases, especially in cases with small \(Bi \) values (no larger than 1.0, say), one interior OC point (\(N = 1 \)) is enough, because quadratic curves are quite sufficient to describe concentration profiles inside the particle in such cases. Often, \(N = 2 \) is needed, which is sufficient. This reveals the weak point in lumped particle models which fail even to consider the internal gradient inside the particle. Sometimes \(N = 1 \) causes only minor error, but gives large saving in CPU time. For example, in Figure 4, if \(N = 1 \) is used instead of \(N = 2 \), it will only slightly reduce peak heights (by less than 1.5%), while CPU time (on SUN 4/280) drops to 5.91 min compared to 15.10 min for \(N = 2 \). If bulk concentration profiles are not stiff, \(Ne = 1 \) to 6 is usually sufficient. Stiff cases need more elements to overcome oscillation. For near shock wave stiffness in concentration profiles, \(Ne = 20 \) to 30 usually is enough. From our extensive computer simulations of various studies, including cases with isotherms other than Langmuir type such as constant separation factor type in ion exchange (Helfferich, 1970), Langmuir-Freundlich type (Ruthven, 1984), and even some unfavorable types, we found that the CPU time depends on total number of ODE in the system, stiffness of concentration profiles,
and the type of operation being simulated. Frontal adsorption takes less time to simulate than the displacement and elution. Generally speaking, with medium stiffness which typically requires Ne = 7, CPU time on SUN 4/280 for binary systems is less than 1 min for frontal adsorption, and 5 min for displacement and elution. In a stiff case, we may use a small Ne to have a quick look at the crude solution. For example, in Figure 2, the unconverged solution which gives a general shape similar to the converged concentration profiles can be obtained with Ne = 4 and a CPU time of only 0.43 min on SUN 4/280. It is interesting to note that oscillation does not destroy mass balance of capacity area. In Figure 2, for component 1, the theoretical dimensionless capacity area \((1 - \epsilon_s)(1 - \epsilon_p) a_i/(1 + b_i, C_0) + (1 - \epsilon_s) b_i + \epsilon_1/s_i)\) is 3.15625, and numerical integrations for the areas under component 1 concentration profiles (converged and unconverged) are 3.15630 and 3.15626, respectively.

Table 1 clearly shows that the numerical approach presented in this work is indeed very efficient and robust under various operation conditions. This is mostly due to the following facts:
- The use of FE method for bulk-phase equations enables us to deal with stiff systems with high efficiency and accuracy. Note that, OC method is not suitable for stiff cases (Finlayson, 1980).
- The use of OC method for particle-phase equations is very efficient.
- Our final ODE system contains no algebraic equations and thus enables us to use the highly-efficient Gear’s stiff method.
- No iteration is used to take care of nonlinear isotherms.

Other noticeable features of our approach are: 1. axial dispersion is considered in the model with almost no added complexity, as shown in Eq. 11; and 2. finite element has a renowned feature of being able to deal with variable physical properties, which is very useful because in many cases physical property parameters are variables.

Acknowledgment

We acknowledge the financial support from the National Science Foundation Grant EET-8613167A2.

Notation

- \(a_i, b_i\) = constants in Langmuir isotherm for component \(i\)
- \(B_i\) = Biot number of mass transfer for component \(i\), \((k, R_s/\epsilon_s D_p)\)
- \(C_{p_i}\) = bulk-phase concentration of component \(i\)
- \(C_{q_i}\) = feed concentration of component \(i\)
- \(C_{q_i}\) = concentration used for redefinitionalization for component \(i\), \((\max(C_i(t))\)
- \(C_{p_i}\) = concentration of component \(i\) in the fluid phase within particle
- \(C_{p_i}\) = concentration of component \(i\) in the solid phase within particle (based on unit volume of particle solid, excluding pores)
- \(C_f\) = adsorption capacity for component \(i\)
- \(C_{p_i}\) = \(C_{p_i}/C_{f_i}\)
- \(D_{ax}\) = axial dispersion coefficient of component \(i\)
- \(D_{pe}\) = effective diffusivity of component \(i\)
- \(k_i\) = film mass transfer coefficient of component \(i\)
- \(L\) = column length
- \(N\) = number of collocation points
- \(N_e\) = number of quadratic elements
- \(N_s\) = number of components
- \(P_e\) = Peclet number in bulk fluid phase for component \(i\), \((uL/D_p)\)
- \(R\) = radial coordinate for particle
- \(R_p\) = particle radius
- \(r\) = \(R/R_p\)
- \(t\) = time
- \(v\) = interstitial velocity
- \(Z\) = axial coordinate variable
- \(z = Z/L\)

Greek letters

- \(\epsilon_s\) = bed void volume fraction
- \(\epsilon_s\) = particle porosity
- \(\eta_i\) = dimensionless constant for component \(i\), \((\epsilon_s D_peL/R_p^2)\)
- \(\tilde{e}_i\) = dimensionless constant for component \(i\), \((3B_l/\eta_i(1 - \epsilon_s)/\epsilon_s)\)
- \(\tau\) = dimensionless time, \([t/(L/v)]\)
- \(\zeta_{imp}\) = dimensionless impulse time duration
- \(\phi\) = Lagrangian interpolation function

Literature Cited

Manuscript received Dec. 21, 1989, and revision received Feb. 28, 1990.