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Abstract-A mathematical model for the startup period of a fixed-bed reactor with first-order reaction 
kinetics, axial dispersion and film mass transfer resistance was formulated and solved analytically using 
Laplace transform. The solution can be used to correlate or predict the reactant concentration profiles in 
the effluent of the reactor. The effects of both the Peclet number and Biot number on the effluent 
concentration profiles were studied. As an example, the approximate analytical solution was applied to 
experimental data of lactic acid fermentation in a fixed-bed fermentor with immobilized Lactobacillus 
delbriieckii cells. Copyright Q 1996 Elsevier Science Ltd. 
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INTRODUCTION 

Fixed-bed is a widely used reactor type in fluid- 
solid catalytic reactions either with chemical catalysts 
or with biocatalysts. Efforts have been made in study- 
ing the reaction kinetics, the mass transfer mecha- 
nism, and the mathematical model of fixed-bed reac- 
tors. Most researchers focused on steady-state opera- 
tions (Smith, 1981; Hill, 1977; Bailey and Ollis, 1986). 
Recently, interests in the mathematical modeling of 
unsteady-state operations have increased significantly 
because of their importance in fixed-bed reactor de- 
sign and process control. Monbouquetle et al. (1990) 
applied an intrinsic unstructured model to describe 
the startup dynamics of a continuous Ca-alginate- 
immobilized Zymomonas mobilis fermentation. Gen- 
cer and Mutharasan (1983) studied ethanol fermenta- 
tion in a whole cell immobilized tubular fermentor 
with either a transient or steady-state operation. A dy- 
namic model of an immobilized cell reactor with si- 
multaneous diffusion, reaction, and cell growth was 
suggested by Nakasaki and Mukeji (1989). Because of 
the complexity of the dynamic operation of a fixed- 
bed reactor, the mathematical model has to be solved 
numerically. Chen and Hsu (1989), and Hsu and 
Dranoff (1987) developed a technique in which nu- 
merical inversion of Laplace transform by direct ap- 
plication of the fast Fourier transform algorithm was 
used to solve fixed-bed problems. 

This work was undertaken to achieve a better un- 
derstanding of the startup period of a fixed-bed reac- 
tor with first-order kinetics, axial dispersion and film 
mass transfer resistance. The main objectives were to 
establish a mathematical model and to obtain its 
analytical solution. The effects of the reaction kinetics 
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and operating conditions on the startup period were 
then studied using the solution. As a practical 
example, the startup period of lactic acid fermentation 
in an immobilized-cell tubular reactor was presented 
to verify the solution. 

MATHEMATICAL MODEL AND ITS SOLUTION 

For one-dimensional axial flow, the mass balance 
equation for a fixed-bed tubular reactor with axial 
dispersion can be written as 

where R is the consumption rate of the reactant. 
When pore diffusion resistance can be neglected, the 
global kinetics for a first-order reaction can be ex- 
pressed by 

where Ci is the reactant concentration at the fluid- 
solid interface. Intraparticle diffusion resistance is ig- 
nored here. The mass transfer rate across the fluid film 
can be expressed by the linear-driving-force model 

Combining eqs (2) and (3), the reactant consumption 
rate becomes 

where K is the apparent reaction rate constant of 
a first-order reaction with film mass transfer resist- 
ance. K can be calculated by the following equation: 
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Thus, eq. (1) can be rewritten as The following equations can be easily proved by the 
method of mathematical induction: ac a2c ac I - - = D  

at " az2 az K C .  (6)  00 

For the startup period of a fixed-bed reactor, the 
initial and boundary conditions are: (15) 

The Laplace transform can be used to solve eqs 
(6)-(9). The result is as follows: 

cosh [ I ( L  - Z ) ]  + sinh [ I ( L  - Z ) ]  . (PeI21L) 

cosh ( l L )  + sinh ( l L )  . (Pe/2iL)  

Combining eqs (12) and (14)-(16), eq. (14) can be 
expressed as a function of s: 

In eqs (15)-(17), a,, bn, c,, d,, en, f., g,, and h, are 
functions of the parameters Pe and Bi. 

After the inverse Laplace transform of eq. (17), we 
obtain the dimensionless reactant concentration at 
the exit of a fixed-bed reactor with first-order kinetics, 
axial dispersion and film mass transfer resistance: 

(10) C, 
- = { ~ X P  (Pe12)ZEl  (11%) [ I  - ~ X P  (- Bn41 (7 > 0) 

where the overhead sign - indicates Laplace trans- co 0 
( Z  < 0) 

form, s is the Laplace transform parameter. Co is the 
inlet concentration of the reactant. Pe and Bi are (18) 

Peclet number and Biot number defined below, re- where 
spectively, 

Pe = "LID,, Bi = KL2/D,. ( l l a ,  l l b )  (19) 

Also, 

The direct inverse Laplace transform of eq. (10) 
seems impossible. Therefore, a series expansion tech- 
nique was used to solve the problem. The hyperbolical 
functions, sinh( ) and cosh( ) in eq. (10) can be ex- 
panded as Taylor's series. After rearrangement, 
eq. (10) can be expressed as 

The parameters a, and B, are functions of the di- 
mensionless parameters Pe and Bi. The parameters a, 
can be determined from the steady-state solution to 
eq. (6) as follows. As steady state, eq. (6) can be 
expressed as 

The analytical solution to eq. (20) at the reactor exit 
( Z  = L )  is 

At the reactor exit we have Z = L.  Thus, the second 5-  - exp (Pel21 
and third terms in eq. (13) vanish. Therefore, eq. (13) Co cosh (yL)  + (Pel2yL) sinh (yL)  (21) 
becomes 

where 
C 1 112 
- = exp 1 - E  
C 1 Y L = [ ( : ) I + ~ B ~ ]  . (22) 

When .r is infinite, eq. (18) becomes the solution 
(14) for steady-state operation, since it is no longer 
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time-dependent. It is simplified to DISCUSSION OF THE ANALYTICAL SOLUTION 

(1) Relationship between the steady-state solution and 
CL Pe " 1 

- (23) the approximate unsteady-state solution 
CO a. It is desirable to evaluate eqs (25) and (26) to see 

Combining eqs (21) and (23), we have 

" 1 I-= 1 

a, cosh (yL) + (Pe/2yL) sinh (yL)' (24) 

Equation (18) is the solution to the unsteady-state 
startup period of the reactor. However, it is difficult to 
use since a general explicit expression for 1, is not 
available. Instead, we can use eq. (10) if only a limited 
number of terms are taken in the Taylor's series ex- 
pansions of the hyperbolic functions in eq. (10). For 
example, if only the first two or three terms are con- 
sidered in the Taylor's series expansions, the respect- 
ive approximate analytical solution can be expressed 
as follows: 

and 

where 

Hence, by comparing eq. (23) with eqs (25) and (26) 
at z = + oo (i.e., at steady state), we obtain the follow- 
ing approximate relationships: 

whether the first two or three terms in the Taylor's 
series expansions are sufficiently accurate. This is par- 
tially achieved by comparing the exact value of 
X(l/un) (appearing in the exact unsteady-state solu- 
tion, eq. (18)) obtained from eq. (24) and its approxim- 
ate value obtained from eqs (28) and (29). The results 
are shown in Fig. 1. It is obvious that at lower Pe and 
Bi values (e.g. Pe < 4, Bi < 5), the exact value of 
C(l/a.) obtained from eq. (24) is in good agreement 
with those obtained from eqs (28) and (29). At higher 
Pe and Bi values, more terms are needed in the 
Taylor's series expansions for accuracy. Figure 
1 shows that three term Taylor series expansions are 
much better than two term expansions in terms of the 
accuracy of E(l/a,). In the following discussions, we 
will only use eq. (29), which is the approximate solu- 
tion to eq. (6) using the first three terms in the Taylor 
series expansions of the hyperbolical functions in eq. 
(10). 

(2) The effects of Pe and Bi values 
Figures 2 and 3 show the effects of the dimension- 

less parameters Pe and Bi on the fixed-bed effluent 
concentration history in the startup period. Both fig- 
ures are calculated from eq. (26). Figure 2 indicates 
that when the value of Pe is kept constant and the 
value of Bi is increased, the effluent concentration 
levels off to the steady-state value more slowly and the 
reactant conversion ratio (x = 1 - CL/Co) at steady- 
state is higher. When the value of Bi approaches 
infinity (i.e., the apparent reaction rate constant, K, 
approaches infinity) the reactant concentration in the 
effluent approaches zero, and the conversion ratio 
approaches unity. A very small value of Bi indicates 
that the apparent reaction rate constant is very small. 
This makes the conversion ratio close to zero. 

When Bi is a constant, increasing Pe value means 
the increase of flow rate if the length of fixed bed is 
kept unchanged. The effluent concentration will be 
faster to reach the steady-state value after the startup 
period, but the conversion ratio will be lower at the 
steady state. If Pe approaches infinite, the effluent 
concentration history will be a step change and the 
conversion ratio will be zero. From Figs 2 and 3, it is 
obvious that a higher value of Bi and a lower value of 
Pe are preferred to obtain a higher conversion ratio at 
the steady state, but a longer time will be required to 
reach the steady state. 

(3) The effect of axial dispersion on the conversion 
ratio 

(From two term Taylor's series expansions) When the axial dispersion in the fixed bed can be 
(28) neglected, which is equivalent to assuming plug flow, 

" 1 I -=  
1 the mass balance equation, eq. (I), is reduced to 

n = l  a, a. + a l q  + azq2 ac ac i - E 

- + v - + -  R = 0 .  
(From three term Taylor's series expansions). (29) at a 2  E 

(30) 
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Fig. 1. 
(24), in 

The comparison between exact and approximate values of Z(l/a.). [(--) calculated 
which the yL values are evaluated from eq. (22) with E = 0.4; (-  - -) calculated from 

(- . -) calculated from eq. (29)l. 

from eq. 
eq. (28); 

Fig. 2. The effect of parameter Bi on the effluent conversion ratio when Pe = 1.0 and Pe = 0.5 in the 
startup period. [(- ) Pe = 1.0, (- - -) Pe = 0.5)]. 

Combining the initial and boundary conditions, the Equation (31) indicates that the conversion ratio of 
effluent concentration in the startup period can be the fixed-bed reactor with first-order kinetics in the 
obtained using Laplace transform startup period will be a step change when plug flow is 

assumed. 
(-  [(I - &)/&I . (KLIu)  (z > 0) 

(31) It is obvious that eq. (31) is the limit of eq. (18) when 
(7 < 0) D, is infinite. Due to the counteracting effect of Pe and 
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Fig. 3. The effect of parameter Pe on the effluent conversion ratio when Bi = 1.0 and Bi = 2.0 in the startup 
period. [(- ) Bi = 1.0, ( - -) Bi = 2.0)]. 

Bi on the conversion ratio shown in Figs 2 and 3, 
there should be an optimal value of D, to reach the 
largest conversion ratio (x = 1 - CL/Co) for a certain 
fixed-bed reactor. 

A PRACTICAL EXAMPLE 

Since the fixed-bed structure, reaction kinetics, and 
flow pattern are the same in both the startup period 
and the steady-state period, the dimensionless para- 
meters Pe and Bi will remain the same. Therefore, the 
Pe and Bi values, correlated from the steady-state 
experimental data based on eq. (21), can be used to 
predict the conversion ratio in the startup period. 

In order to test the approximate analytical solution 
in this work, lactic acid fermentations with immobi- 
lized cells in a fixed-bed fermentor were studied. Ac- 
cording to Donald (1984), the fermentation rate of 
lactic acid with immobilized cells observes first-order 
kinetics. Therefore, the system can be used to test the 
analytical solution. 

( 1 )  Experimental 
A strain of Lactobacillus delbriieckii was used in the 

experiments. The cells were immobilized by the al- 
ginate calcium entrapment method. A fixed-bed col- 

umn with an inner diameter of 0.28 m and a bed 
length of 0.37 m was used as a bioreactor. The void 
fraction of the bed was found to be E = 0.4. The 
reaction temperature was controlled at 45°C. The 
composition of inlet fermentation medium w- & S  as 
follows (see Table 1). 

At the beginning, the immobilized cells were cul- 
tured in the column with the fermentation medium. 
Then, the medium was wash1 ' out with distilled water 
quickly until no glucose could be detected at the 
effluent to ensure that initial conditions had been 
established. After that, the fermentation medium was 
pumped into the column inlet at a constant flow rate. 
The glucose and lactic acid concentrations in the 
column effluent were analyzed to obtain the effluent 
concentration history in the startup period until 
steady-state operation was reached. 

(2) Results and discussion 
The experimental data on glucose effluent concen- 

trations at different flow rates are shown in Fig. 4. 
The dimensionless parameters Pe and Bi which were 
correlated from steady-state experimental data 
through nonlinear regression using eq. (21) are given 
in Table 2. The dynamic behavior in the startup 

Table 1. Medium composition (wt %) 

Glucose Yeastextract Peptone KH2P04: MgS04.7H20 NaCl pH 
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Fig. 4. The comparison between the experimental data and the predicated curves for effluent history in 
lactic acid fermentation with immobilized cells in the startup period: [(A) run 1 data points, (0) run 2 data 

points; (0) run 3 data points; (0) run 4 data points]. 

Table 2. The parameters Pe and Bi cor~elated 
from steady-state experimental data 

Run no. v (m/s) Pe Bi 

period for the fixed-bed lactic acid fermentation was 
predicted based on the parameters listed in Table 
2 and eq. (26). Figure 4 shows that the predicted 
curves using eq. (26) are in good agreement with the 
experimental data. With an increase in the flow rate, 
Pe will increase but Bi will decrease based on the 
steady-state data listed in Table 2, and at the same 
time, the conversion ratio of glucose will be reduced 
according to Fig. 4. 

CONCLUSIONS 

An approximate analytical solution for the un- 
steady-state startup period of a fixed-bed reactor with 
first-order kinetics, axial dispersion, and film mass 
transfer resistance was obtained. The solution is ca- 
pable of predicting the dynamic behavior during the 
startup period with parameters correlated from 
steady-state operations. A practical example using 
lactic acid fermentation successfully demonstrated 
that the approximate analytical solution provides 
a satisfactory fit of the experimental data. 

NOTATION 

Biot number defined in eq. (1 1 b), dimension- 
less 
concentration of reactant, mol/m3 

axial dispersion coefficient, m2/s 
first-order reaction rate constant, s- ' 
fluid film mass transfer rate constant, s-' 
apparent reaction rate constant, s-I 
length of the fixed-bed column, m 
Peclet number, dimensionless 
consumption rate of reactant, mol/(m3 s) 
Laplace transform parameter 
time, s 
interstitial velocity, m/s 
reactant conversion ratio, dimensionless 
column length axis starting from the inlet of 
the fixed-bed reactor, m 

Greek letters 
LY parameter in eq. (18) 
P parameter in eq. (18) 
Y parameter defined by eq. (22) 
E void fraction of the fixed-bed 
1 parameter defined by eq. (12) 
T dimensionless time defined by eq. (19) 

Subscript 
0 inlet 
L reactor exit 
n 1,2,3 ... 
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