
Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 1

Department of Chemical Engineering
ChE-101: Approaches to Chemical Engineering Problem Solving

MATLAB Tutorial III

Arrays and Matrix Operations/For Loops (last updated 4/27/06 by GGB)

Objectives:
 These tutorials are designed to show the introductory elements for any of the topics
discussed. In almost all cases there are other ways to accomplish the same objective, or higher
level features that can be added to the commands below. Before working on this tutorial you
should understand the concepts described in H-2 (flowchart diagrams) and H-3 (matrix
operations).

Any text below appearing after the double prompt (>>) can be entered in the Command
Window directly or in an m-file.
__

The following topics are covered in this tutorial;
Introduction (array definitions and uses)
Constructing
Terminology, Array Referencing, and Transposing
Array_Array Mathematics (Matrix Operations, see H-3 for details)
Element_by_Element, Array_Array Mathematics
Special Matlab functions for Arrays (length, sum, min, max)
Checking Arrays Stored in Memory
For loops (See H-2 for their description and their used in flowchart diagrams)
Solved Problems (guided tour)
Proposed Problems
__

Introduction: Array definitions and uses:
An Array is a list of numbers or expressions arranged in horizontal rows and vertical columns.
When an array has only one row or column, it is called a vector. An array with n rows and m
columns is called a matrix of size n x m. In computer programming arrays can be constituted by
numerical and non-numerical variables. When an array is constituted by numerical variables it is
called a matrix; See H-3 (Working with matrices and arrays for more details). Arrays are very
useful in computer programming because they can be used to store information in an organized
way which is easily accessible when needed.
In the majority of programming applications you will encounter, information is stored or
provided to in the form of arrays. Arrays provide a convenient way to store information for
calculations, printing, plotting, etc. There are many times when you want to perform the same
operation on multiple numbers. Other times we want to do a calculation repeatedly and save the
intermediate values. There are some built_in Matlab files which require the information in this
form. This tutorial will explain the basics of creating, manipulating and performing calculations
with arrays.
In this lab session we are going to work on the use of arrays. Last week we solved a problem to
estimate the grades of the class. Because we were not using arrays it was not convenient to store

 2

the grades (remember that we had to print the grades as soon as they were calculated). As an
example of the use of arrays to enhance the performance of a code and to demonstrate their
ability to store and access information we are going to modify that code (see solved problems)
using arrays.
IMPORTANT: Brackets [] are used for matrix and array operations in Matlab. DO NOT USE
parenthesis () to SPECIFY arrays and matrices.

Constructing Arrays
All the operations that are going to be demonstrated below work for the m files, function files,
and command window. To avoid debugging m files, please practice the examples given below in
the COMMAND WINDOW.

There are a number of ways to construct arrays:

Entering the values directly.

Note that mathematical operations can be performed while addressing the elements. Examples
given above are row vectors.
__
Each row of an array can be ended by a semi_colon.
The example given below is to create a column vector

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 3

The example given below is to create an array of numbers (also known as matrix):

Rows can also be ended by using a return. This is the preferred way of creating large matrices,
because the columns can be lined up for easy readability.

Equally Spaced Arrays

Typing every entry is time consuming for long arrays. If the points are equally spaced this isn't
necessary. An alternative method is to use the colon notation [first_value: interval: last_value].

Notice that we have created an array with the first element being “0”, the last element being
“0.4” and the elements in between are spaced using and interval of 0.1
If the interval is left out Matlab uses a default interval of 1.

 4

Another way of specifying an equally-spaced array is to use the linspace command. This allows
you to specify the number of data points, but not the interval to be used. The notation is
linspace(first_value, last_value, number_of_values):

__

Arrays can be combined.

Notice that Array “c” is constituted by the elements of array “a” and “b”.

Terminology, Array Referencing, and Transposing
Matlab uses the term array to indicate any set of information that is stored with a single variable
name. In mathematics we typically speak of vectors or matrices. A vector is simply an array that
has either a single row or column. A matrix can be of any size in terms of the rows or columns.
We speak in terms of rows and columns, and indicate the size of arrays by specifying the (rows x
columns). Six elements might be in any of the following forms: (1x6, 6x1, 2x3, 3x2)

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 5

Assigning and Addressing Array Elements

Individual array elements can be accessed and used in calculations. Parenthesis () is used to do
this, see the example below

Notice that a “,” is used to access elements in arrays because they have two dimensions (rows
and columns).
IMPORTANT: You need to know the positions where your elements were stored to manipulate
them.
Now we can do calculations involving different elements. For example, using the arrays that we
already created we can do the following calculations:

You can also manipulate and modify the elements stored in an array. See example below where
we are changing the value of the element that was stored in position “3” of the array “x” (in this
case vector)

By doing this you will be changing
the value of the vector “x” stored in
position 3

Notice the new value stored at
position 3 in the x array

By doing this you will be changing
the value of the vector “x” stored in
position 3

Notice the new value stored at
position 3 in the x array

 6

If a value is assigned to a specific array element, any elements before that one which have not
specifically been assigned a value, are given a default value of zero. See the example below

__

Sections of an array can be accessed. See example given below:

Transposing

The orientation of an array can be transposed by use of the single quote notation. The transpose
property is described in details in H-3 for matrices; it works exactly the same for arrays

This is the transpose of 'a', and is a (3x2) array. The first row of 'a' becomes the first column of
'b', and so forth.

Notice that we had not defined all the elements of the
array f. We are only saying that element “4” is “1”

When you do this, Matlab assumes that the vector “f”
has 4 elements and that all the other values before that
are zeros, see what the screen displays for vector “f”

Notice that we had not defined all the elements of the
array f. We are only saying that element “4” is “1”

When you do this, Matlab assumes that the vector “f”
has 4 elements and that all the other values before that
are zeros, see what the screen displays for vector “f”

Notice that “a” is a 2x3 array

When “a” is transpose a new array is
created with dimensions 3x2. Details
about transposing are given in H-3

Single quote operator is used to transpose in Matlab

Notice that “a” is a 2x3 array

When “a” is transpose a new array is
created with dimensions 3x2. Details
about transposing are given in H-3

Single quote operator is used to transpose in Matlab

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 7

Array_Array Mathematics
This section explains how Matlab performs the Matrix operations that were described in H-3
(adding matrices, subtracting matrices, and multiplying matrices). You need to be careful about
the dimensions of the matrices to perform the matrix operations (see H-3). Remember that to add
and subtract matrices the matrices must have the same dimensions. Also there are special rules
for the dimensions of the matrices in order to multiply them.
Examples of Matrix operations in Matlab are given below:

Example 1-Adding Matrices: Given the matrices, A, B, and C obtain matrix D = A + B and
E=B+C

Example 2-Subtracting Matrices: Use the matrices A and B defined above to calculate F=B-A

2 2 1
1 2 2 3

 C 0 4 1
2 3 4 1

2 5 0.5
A B

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

+ is the operator to add
matrices

Matrices B and C can’t be added because they don’t have the
same dimensions (this was explained in H-3). Notice the error
message given by Matlab, this indicates that there is a
problem with the dimensions of the matrices used.

+ is the operator to add
matrices

Matrices B and C can’t be added because they don’t have the
same dimensions (this was explained in H-3). Notice the error
message given by Matlab, this indicates that there is a
problem with the dimensions of the matrices used.

- is the operator to
subtract matrices
- is the operator to
subtract matrices

 8

Example 3-Multiplication of a matrix by a scalar: Given the matrices A, B, C, D. Perform the
following calculations:
F=A-B+0.5D
G=2(A+B+C)-D

Example 4-Multiplication of a matrices: Given the matrices X and Y, Perform the following
calculations: P = X Y, T= X Y

1 2

2 3
A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1

1 1
B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 1

1 0
C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1
1 0

D
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦

1 2

2 3
A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1

1 1
B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 1

1 0
C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1
1 0

D
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦

3 1
5 9

8 6 Y
7 2

0 4
X

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

Even though the error message indicates that there is a problem with
the dimensions of the matrix, the real problem is that matrix “b” does not
exist. Remember that Matlab is case sensitive then “b” is not the same
that “B”. This was probably a typo from the user. Message: check that
you don’t have typos before checking the dimensions of your
matrix

Notice how the matrix “D” is multiplied by the scalar. The operator used
is *

Even though the error message indicates that there is a problem with
the dimensions of the matrix, the real problem is that matrix “b” does not
exist. Remember that Matlab is case sensitive then “b” is not the same
that “B”. This was probably a typo from the user. Message: check that
you don’t have typos before checking the dimensions of your
matrix

Notice how the matrix “D” is multiplied by the scalar. The operator used
is *

The problem is that the dimensions of the matrices X and Y do not allow
Y to be multiplied by X. See H-3 for more details

* Is the operator used to multiply matrices

The problem is that the dimensions of the matrices X and Y do not allow
Y to be multiplied by X. See H-3 for more details

* Is the operator used to multiply matrices

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 9

Element_by_Element, Array_Array Mathematics
We need to be careful when we are performing array_array calculations. Addition and
subtraction of arrays or matrices only exist on an element_by element basis. This means the
operation is performed between corresponding elements of the arrays. To do this the arrays must
be of the same size and orientation.
Addition and subtraction of element_by_element in arrays in the same operation described in
Matrix operations (see Array_Array Mathematics section above).

Element_by_element multiplication and division of arrays is different to what it was described in
the Array_Array Mathematics section. For doing this operation the matrices need to have the
same dimensions.
For element-by-element multiplication and division the notation needs to be changed because
there are other types of matrix multiplication (see Array_Array Mathematics section). The
notation for element_by_element operations uses a (.* or ./).

See example below to perform element-by-element operations in arrays

 10

You can also power all the elements of an array by using .* See the example below:

You can calculate sin, square root, exponential, etc of the elements of an array by:

Special Matlab functions for Arrays (length, sum, min, max)
Matlab has a number of built-in functions that are of use. Some of those are presented here.

The ‘length’ command

The length command will identify the number of elements in a vector.

Calculates the sin of each of the
elements stored in A

Calculates the square root of
each of the elements stored in A

Calculates the exponential of
each of the elements stored in A

Calculates the sin of each of the
elements stored in A

Calculates the square root of
each of the elements stored in A

Calculates the exponential of
each of the elements stored in A

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 11

The ‘sum’ command
The elements of an array or matrix can be summed using the sum command. If the array is a
vector, it will produce a single value:

If the array has two dimensions it will sum all the elements of each column and it will produce
two values:

The ‘min’ and ‘max’ commands
The ‘min’ and ‘max’ commands can be used to locate the minimum or maximum entry in a
vector.

Sum of
elements of
column 1

Sum of
elements of
column 2Sum of

elements of
column 1

Sum of
elements of
column 2

 12

You can also have the ‘min’ or ‘max’ command give you which element of the array is
identified.

Notice how the command works in an array:

Need to use brackets, the variable minY stores the minimum and
the variable I stores the element number in the array
Need to use brackets, the variable minY stores the minimum and
the variable I stores the element number in the array

Provides the minimum of
each column

Provides the two different
rows of the minimum
elements

Provides the maximum of
each column

Provides the two different
rows of the maximum
elements

Provides the minimum of
each column

Provides the two different
rows of the minimum
elements

Provides the maximum of
each column

Provides the two different
rows of the maximum
elements

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 13

More examples

Checking Arrays Stored in Memory
Whereas using the 'who' command gives a list of variables, the 'whos' command gives the
additional information of the array dimensions. For example:

Minimums in rows
2, 3 and 2,
respectively for
each colunm

Minimums in rows
2, 3 and 2,
respectively for
each colunm

 14

For Loops (See Chapter 7 of the book, section 7.4.1)
for loops allow for a group of MATLAB commands to be repeated for a fixed, predetermined
number of times.
The range for the loop counter is set as follows: for n=1:5 (This means that n will start at 1 and
the loop will be repeated until n = 5. Each time the loop runs it automatically adds 1 to the loop
counter “n”
Example 5: Write a Matlab algorithm that will allow performing the operations described in the
flowchart diagram given below:

This is the m file (example_5_TIII)

Length = 10
y=0

for (n=1:length)

y=y+1

End for

n, y

Start

end

Length = 10
y=0

for (n=1:length)

y=y+1

End for

n, y

Length = 10
y=0
Length = 10
y=0

for (n=1:length)for (n=1:length)

y=y+1y=y+1

End forEnd for

n, y

Start

end

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 15

This is what the program will display

If you want a different increment instead of 1 you should use the following for s = 1.0: -0.1: 0.0
This means that the loop will start with s = 1.0, it will decrease the value of s until s = 0 by
subtracting -0.1 each time the loop is repeated.
See example given below:

You cannot short_circuit the loop by reassigning the loop variable, n, within the loop.

Arrays can be used and manipulated by using for loops. This is an example of how it works:.

1. M file 2. Results1. M file 2. Results

1. M file 2. Results1. M file 2. Results

 16

By keeping 'n' as an integer loop counter it is much easier to organize and access arrays.

for loops can be nested, ie. stacked within each other. See the example given below:
The flowchart diagram can be coded as

Input and manipulate data using for loops: for loops can be used to create vectors that store
information. This information can then be manipulated/restore/and-or printed. For example, the
table given below has information on the mass and the volume of the samples. Create a Matlab
program that will calculate the density of the different samples.
Sample # 1 2 3 4
Mass (g) 10 25 50 15
Volume (ml) 100 300 1000 800

Solution:

1. Follow the “tips for solving problems”
2. Write a flowchart diagram (see H-2).

For n=1:4

For m=1:3

c(n,m)=2*n+3*m

End for

End for

For n=1:4For n=1:4

For m=1:3For m=1:3

c(n,m)=2*n+3*m

End forEnd for

End forEnd for

M file

results

M file

results

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 17

Solution Option A: Calculating density vector one element at a time

This is the Matlab code:

Length

for (i=1:length)

Density(i)=M(i)/V(i)

End for

Density

Start

end

Legend:

Length= number of samples (for loop
control)

i= counter of the for loop

M= vector that stores the mass of each
sample, g

V= vector that stores the volume of each
sample, ml

Density= vector that stores the density of
each sample, g/ml

M(i), V(i)
In this case we will input the each
element of the vectors “M” and “V”
individually (as explained on pages 5
and 6 of this tutorial

Option A: In this case we are
calculating each element of the vector
density inside the for loop by using
each of the elements of the M and V
vectors on an individual basis

Length

for (i=1:length)for (i=1:length)

Density(i)=M(i)/V(i)Density(i)=M(i)/V(i)

End forEnd for

DensityDensity

Start

end

Legend:

Length= number of samples (for loop
control)

i= counter of the for loop

M= vector that stores the mass of each
sample, g

V= vector that stores the volume of each
sample, ml

Density= vector that stores the density of
each sample, g/ml

M(i), V(i)M(i), V(i)
In this case we will input the each
element of the vectors “M” and “V”
individually (as explained on pages 5
and 6 of this tutorial

Option A: In this case we are
calculating each element of the vector
density inside the for loop by using
each of the elements of the M and V
vectors on an individual basis

 18

This is what will show up on the command screen:

Solution Option B: Calculating density vector all elements at a time

Length

for (i=1:length)

Density=M./V

End for

Density

Start

end

Legend:

Length= number of samples (for loop
control)

i= counter of the for loop

M= vector that stores the mass of each
sample, g

V= vector that stores the volume of each
sample, ml

Density= vector that stores the density of
each sample, g/ml

M(i), V(i)

Option B: In this case we are calculating
all the elements of the density vector
outside the for loop by using the
element_by_element array mathematics as
explained on p. 9 of this tutorial

Length

for (i=1:length)for (i=1:length)

Density=M./VDensity=M./V

End forEnd for

DensityDensity

Start

end

Legend:

Length= number of samples (for loop
control)

i= counter of the for loop

M= vector that stores the mass of each
sample, g

V= vector that stores the volume of each
sample, ml

Density= vector that stores the density of
each sample, g/ml

M(i), V(i)M(i), V(i)

Option B: In this case we are calculating
all the elements of the density vector
outside the for loop by using the
element_by_element array mathematics as
explained on p. 9 of this tutorial

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 19

This is the Matlab code:

This is what will show up on the command window:

 20

SOLVED PROBLEMS

1. Write a program in Matlab to calculate the sum of the first n terms of the series: ()
1

1
2

kn

k
k

k

=

−
∑ .

Execute the program for n= 4 and n=20

Solution:

3. Follow the “tips for solving problems”
4. Write a flowchart diagram (see H-2). In the space given below draw your flowchart

diagram

5. Write the code in Matlab. See the solution given below.

Matlab
code

Results for n=4 Results for n=20

Matlab
code

Results for n=4 Results for n=20

Tutorial III: Arrays and Matrix Operations/For loops Last updated 4/27/06 by G.G. Botte

 21

PROPOSED PROBLEMS

Dr. Botte has decided to ask her ChE-101 class to help her in preparing a Matlab program
that will allow calculating the grades for the class and report important statistics by the end of the
quarter. Your task will be to write the program that Dr. Botte will use
 Here is what Dr. Botte would like her code to be able to do:

1. Calculate the grade of each student based on the different course assignments, exams, and
class participation (she will provide the total points for each item for each student in the
100 scale). The weight percentage of the grades activities is as follows: 40% homework,
55% Exams, 5% class participation. Dr. Botte wants the grade of the students to be stored
in an array. That way all the grades can be calculated at the end of the program.

2. Provide the arithmetic average for the final grades of the class in the 100 scale. Do the
calculation using arrays

3. Calculate the percentage of students that obtain A, B, C, D, and F grades given the
following scale:

Final Grade Scale
A Grade ≥ 90
B 79≤ Grade <90
C 70≤ Grade <79
D 60≤ Grade <70
F Grade <60

4. Test your program with the following grades:

Student Homework Exams Class Participation
1 100 98 69
2 86 60 80
3 99 86 100
4 66 89 70

HINT: The idea of this problem is to modify the code that you built last week but using
arrays, this will show you how arrays and vectors can help when building the code and
manipulating results.

